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An alternative set of expansion functions is described. The first 48 in the set are
listed explicitly, and 16 generalized formulas are given, from which the entire
rest-system set of functions can be constructed. Explicit and generalized matrix
elements for the rest Hamiltonian are given. An auxiliary condition is intro-
duced, leading to explicit formulas and generalized formulas for the expansion
coefficients, C;, accompanying the expansion functions, ;.

1. INTRODUCTION

In the second article in this set (Clapp et al., 1979), which will be
referred to as IL! a system of trilocal expansion functions was described.
Each function in that system contained a “radial” factor of the form
h, (k% ), where the hyperspherical radial variable R was defined by

63/2=("1_"2)2‘*‘(l'2 —r3)2+(r3—r1)2 (1.1)

Because of the way this variable encloses the three points, the functions
will be characterized as “bowl” functions.

Most “bowl” functions also depend explicitly on the relative vectors r
and p. These were defined earlier, in the first article in this set (Clapp et
al., 1980), to be referred to as I. The definitions are

r=Q2r,—r,—r3)/2,  p=(r,—rs) (1.2)

'Equations from II will be referred to as (IL.1.1) etc.
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Insertion of (1.2) into (1.1) gives
R2=2r%+3p%/2 (1.3)

The present article will introduce an alternative expansion, in terms of
“tree” functions. Here the “radial” part of each function is contained in a
factor of the form j,, ,. This factor is itself the product of two factors, with
Jo,o being given by

Jo,0 =jo("rr)jo(“pp) (1.4)

where each j; on the right is an ordinary spherical Bessel function of order
zero. In (1.4), and in the more general j,, , to be defined later, the “radial”
dependence is separated into a factor depending on the magnitude of r and
a second factor depending on the magnitude of p. The branching relation-
ship of these two vectors is evident from Figure 1, which also shows the
centroid vector R, defined by

R=(r,+r,+r;)/3 (1.5)

The “tree” designation for a function containing a factor j, , is meant to
suggest this branching.

The two expansions ought to be equivalent, so that it should just be a
matter of convenience which one is chosen. The “bowl” functions display
the symmetry properties in a more self-evident way. On the other hand, the
“tree” functions can be easier to work with, and the resulting structures
can lend themselves to more straightforward visualizations.

For the next few articles, we will put aside the “bowl” functions and
work with the “tree” functions. Later we can return, and look for the

Fig. 1. Coordinate vectors for the three-body problem.
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equivalence. It is likely that both kinds of expansion functions will be
needed for the efficient treatment of more complicated N-local systems,
particularly those in which a closed shell 1s combined with a few additional
quanta. The “bowl]” functions would appear to be most appropriate for the
description of the closed shell, while the “tree” functions are used to
connect the shell to the added individual quanta.

2. REST SYSTEM EXPANSION

As in the preceding article, we will direct our attention to the upper
middle tier, characterized by M, = +1/2. The initial function in the

expansion, replacing y,"'/? in (11.2.2), will here be defined by

P1=NoJo.o (+)722(1)+(=)" (1) ] (2.1)

where the o-spin functions 22(1) and 2°(1) are those given explicitly in
(I1.2.9) and (I1.2.10). The 7-spin functions to be used here are

o | o |
0 0
] 1
1 —1
(+y=| o (=y=1 o 2.2)
0 0
0 0
0 0

in the notational format used in the preceding article. The normalization
factor in (2.1) is given by

Ny=«3/2/4 (2.3)

and differs by a numerical factor from the N, given previously in (I1.2.3),
but has the same role of giving each function in the expansion the
dimension of (length) ~3/2 so that its square can be interpreted as a volume
density.

The action of the trilocal Hamiltonian upon ¢, will generate the other
functions in the tree expansion. Each will have a “radial” factor j,, , which
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can be represented in terms of the spherical Bessel functions through the
definition

Jmon = (8,1 ) " (i, 7 Wk ,0)  (K,0) (24

The factors (2.4) satisfy the two recursion relations
Jmon=C@mA D) ooy 87 1) (2.52)

Jmn =) G #6205, ] (2.5b)
and the two differentiation relations

vrjm,n = —Kzrjm+1,n (26&)
ijm,n = —"ﬁpjm,nu (2.6b)

The 7-spin functions (2.2) make reference to a basis system of the
form (I1.2.8), but with the superscript o replaced by a superscript 7. It can
be seen that only two 7-spin combinations are utilized, and for each of
these we have

T =+1 2.7)

We can also see that the operators 7, and 7, interchange the functions
(2.2), according to the pattern given by

T (+)=—(-)", (=)' =—(+)" (2-8)
() =(=)",  me(=)=(+)" (2.9)

We can define an exchange operator P" through
P (+)'=(-), P(=)=(+) (2.10)

This operator is similar in its effect to the operator P" defined in equation
(13.4) of Clapp (1980), for the bilocal analysis, and we anticipate that the
pair of quanta involved in the operations in (2.10) above may play the role
of an attached bilocal photon within the trilocal structure.
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The Hamiltonian operator, specialized to the upper-middle tier and to
the 7-spin dependence in (2.2), can be written as

H=H, +H,, (2.11a)
H, =(1/9)(¢°-k—3P'0” k+0° k) (2.11b)

H, ,=(1/6ix)(26°-V, ~4P"6*-V, +3P%0?-V, +20°-V, +2P0°-V,)
(2.11¢)

These relations are equivalent to (I1.2.22), and are based on (1.2.8a). The
spin operator ¢ is the one which was defined in (I1.2.21), while o® and ¢
are defined by

¢’=0,—0a, (2.12a)
o0°=20,—0, 0, (2.12b)

Operation upon ¢, by the rest-system Hamiltonian H, , will generate a set
of functions which do not involve the momentum k, together with matrix
elements linking these functions. The procedure is similar to that used in II
for generating the bowl functions ; from the initial function y;.

As in II, the relative normalization of the individual functions is
determined by the requirement that the matrix form of the operator (2.11¢c)
be symmetrical about its main diagonal. Appendix A contains a listing of
the first 48 functions ¢; in the tree expansion. Appendix B contains the first
24 rows of the matrix representation of the operator H, , defined in (2.11c).

The functions @, utilize the same 16 o-spin rotational functions that
were introduced in Clapp (1961) and were listed in (II.4.1). It can further-
more be seen from Appendix A that the functions follow a pattern having
a cycle length of 16. These functions can in fact be given in the generalized
form shown in Appendix C, where the P, are Legendre polynomials.

In the generalized formulation, the index N is used to count the
number of cycles, each cycle containing 16 functions. Setting N=0
gives the functions ¢, through ¢4, as can be seen from a comparison of
those functions as given explicitly in Appendix A with the formulas in
Appendix C.

The mechanics of operating with the terms in (2.11c) upon the
functions in Appendix A are straightforward but somewhat tedious. Con-
siderable use is made of the relationships assembled in Appendix D of
Clapp (1961). The algebraic operations can also be carried out directly
upon the generalized functions in Appendix C, and this leads to the
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generalized matrix elements included here in Appendix D. The consistency
between the generalized and explicit rows of the H, , matrix can be
verified through substitution of particular values of N into the equations of
Appendix D.

3. AN AUXILIARY CONDITION

In the bilocal analysis (Clapp, 1980), the use of an auxiliary operator
Q, was important in the reduction of infinite equation systems to finite
systems. Auxiliary operators will also be important in the trilocal analysis.
There are several operators which commute with the Hamiltonian and can
therefore be expected to be conserved.

One candidate for conservation is a quadratic differential operator
obtained from the two relative gradients and the exchange operator P". An
auxiliary condition will be introduced through the operator equation

P(V,-V,)®=—x,k,r® (3.1)

which then serves to define the eigenvalue ». The wave function ® will here
be assumed to have the expanded form

P=Cip, +Cp, +Cyps + - - (3.2)

While the complete wave function will contain momentum-dependent
functions, not included in the rest-system functions of Appendices A and
C, these will not be considered for the present. The operator in (3.1) does
not couple between rest-system functions and momentum-dependent func-
tions.

This operator, in fact, couples only within limited families of func-
tions, as a consequence of its scalar form which contains no o-spin
operators. For example, the action of this operator upon the function ¢,
gives

P(V,-V,) o, =(1/3)""*k, 5,91, (3.3)
and action upon g, gives

PV, V, )y =5, (1/3)/ 20, +(4/15) gy (3.4)
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Substitution of (3.2) into (3.1), followed by rearrangement of terms, leads
to relationships among the C; which include

—»C,=(1/3)"*C,, (3.5a)
—»Cy, =(1/3)2C, +(4/15)"/2C,, (3.5b)
and so forth. These can be solved to give
Cy,=—3"%C, (3.6a)
Cy3 =5V2(1/2)(3»% - 1)C, (3.6b)

and the sequence can obviously be continued indefinitely so that all of the
coefficients of the form C,4y, ; can be expressed as multiples of C,.

From the first few expressions, it is evident that there is a general
form, using the Legendre polynomials P,

Cisn+1 =N+ D)'2Py(—»)C (3.7)

and this form can be verified through operation by P"(V,-V ) upon @5y,
as given in Appendix C. A similar formula gives C4p ., in terms of C,.

The same procedure can be used with all of the other expansion
functions. When this is done, however, certain subsets are found to be
grouped together into families that give formulas that are somewhat more
complicated than (3.6) and (3.7). The results of this procedure have been
assembled into Appendices E and F. Appendix E contains explicit for-
mulas giving the coefficients C,,; through C,; in terms of C, through C,q,
while Appendix F contains the corresponding generalized formulas giving
all of the higher coefficients in terms of the first 16.

Comparisons between the C; formulas (Appendices E and F) and the
@, formulas (Appendices A and C) show a strict parallelism. Once the key
has been spelled out, it is possible to move back and forth between a C,
formula and the corresponding ¢; formula. A similar parallelism was found
in the bilocal analysis (Clapp, 1980), where it led to the translation from
expanded wave functions into closed-form solutions.

4. SUMMARY

A system of expansion functions has been constructed, similar in
some ways to the functions described in II. The primary difference is in the
“radial” dependence. In the bowl functions of I, this was contained in a
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hyperspherical Bessel function of a single radial variable. In the tree
functions described here, it is contained in the product of two spherical
Bessel functions, of two radial variables related through the branched
construction in Figure 1.

The tree functions arrange themselves into cycles of 16, and gener-
alized formulas for functions, for matrix elements, and for expansion
coefficients, incorporating this cycle structure, have been assembled into
Appendices C, D, and F. The formulas for the expansion coefficients C;
arise out of the imposition of an auxiliary condition, equation (3.1), which
introduces a new parameter », a dimensionless parameter whose magnitude
will be specified at a later stage of the analysis, after the expansion has
been enlarged to include the dependence of the wave function upon the
centroid momentum.
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APPENDIX A: 48 TRILOCAL BASIS FUNCTIONS

1= NoJo.o (+)722(1) +(=)">(1) ]

92 = No(1/3)"% jo o[ 3(+)" (1) = (=)" (1) ]

s =iNg(2/3)' 2k, jy o( =) *(x)

Pa =iNg(2/3)" K, jo ((+)"*(0)

s =iNok, jy o (+)" 22(r) +(=)" (1) ]

9 =iNo(1/3)" 7K, Ju,o 3(+)"2() = (=) 2(r) ]
@7 =iNok, o1 (=) 2*(p)+(+)" *(p)]

g =iNo(1/3)" 2k, jo1[3(=)"**(0) = (+)"*(p) ]
@5 = Nok, 5, ji,1(+) *(ir X p)

P10 =No(6)1/2"r2j2,0( =) *(rr)
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P11 =No(6)' k2o 2(—)" *(0p)
P12 =No(9/5)"*k,k, jy 1(+)" *(ro+pr)
P13 =No(3/2) ik, i1 [ (=) 2 (ir xp) +(+)" *(irxp) ]
Pra =No(1/2) k1, /1 \[3(=)" 2(irxp) = (+)" *(irxp) ]
P15 =iNg(12)' 22k, jy ((+)" *(irr X p)
P16 =iNo(12)' 1,12 jy (=) “(ipr X p)
P17 =No(3)' ik, iy 1 (-p)[(=)722(1) +(+)" (1) ]
P1s = Nok, K,y 1 (r-p)[3(=)"2(1) = (+)72(1) ]
1o =iNg(3)" 22, o (+) [ 4@)(r-0) — “(0)r?/3]
P20 =iNg(3)" k2 jy o(—) [ *(0)(x-p) — *(r)p?/3]
P2 =iNy(9/2)" k2K, Jo, 4
A @)= (p)r?/3] +(+) [ *@)(r-p)— *(p)r?/3]}
Pr2 =iNo(3/2)' K2, s,
{32 @) @p) = *(p)r*/3] = (+)[ *(x-p) = *(p)r*/3]}
P23 =iNo(9/2)" k62 )1 5
A+ [(p)(r-0)— 227 /3] +(=) [ 2(p)(x-p) — *(®)p*/3])
Pra =iNg(3/2)' k821 2
{(3(+)[22(p)(r-p)— 22 (®p*/3] —(—)[ *(0)(x-p) — *(r)p*/3] }
@25 =No(5)"*k2k2jp (=) *(irXp)(r-p)
P26 =No(30)' k2K, s, |(+) [ H(m)(x-p) — *(rp+pr)r?/5]

P2 =No(30) 2k, 62 j, 5(+)"[ *“(po)(r-p) — *(p+pr)p?/5 ]
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Pae = No(135 /)22 jp (=)
X [ *(p+pr)(r-p) — *(m)20%/3— *(pp)2r?/3]
P20 =No(15/2)" 22 o o(X-p) [ (+)7 (i X p) +(=)" *(irXp) ]
P30 =No(5/2)" 22l jp o(rp) [ 3(+)" 2 (irx p) (=) *(irxp)]
@31 =iNo(75)*i2k2 jy (=) [ *(irr X p)(x-p) — *(iprxp)r?/5]
@12 =iNo(75)" 22 1o o(+) [ “(iprxp)(r-p) — *(irrp)p?/5]
@sa = No(45/4)' k22 o o[ (r-0) = r%2/3 - [ (+)722(1) + (=) (1) ]
@s = No(15/4)' k22 jo o[ (-0)* = r7%/3]- [3(+)722(1) = (=) (1) ]
@35 =iNo(25/2)' 22y (=) {4 (r-0) = r20%/5] — *(0)(x-p)2r7/5)
916 = iNy(25/2)" 20} 1 () {4(0) [ (r-0Y = r26/5 ]~ “(0)(r-p)26/5)
Py =iNo(T5/4) 2632 jy 5 ((+)7 {220 (- p) = r2%7/5]
—2(p)(r-p)2r%/5} + (=) {2 (r-0) —r%/5 ]| = 2(p)(x-p)2r/5})
9 = iNo(5/ 23012 (30CH) (0] (r-0)* = r%6%/5 | - (p)(r-p)2rY/5)
~(=) (W[ —r2/5] - (p)a-p)2rY/5})
P30 =iNo(75/4)' k263 3 ((=)" (22(0) [ (-0)*— r0?/5]
= 2()(rp)20%/5) +(+) {(p) (r-p) — r%/5 | = 2()(r-p)20%/5} )
Pao = iNo(5/ 2023 o5 (3(=){ 22(0)[ (r-p)* ~ r202/5 |~ 22(1)(r-p)26%/5)
=+ {Z(0) (Y /5] - 2 ()(r-p)207/5))

Pt =No(175/8)" i3 jy 5(+)"- [ (r-0)* = r2%62/5] “(irx p)
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Par =No(525/8) i}l jy (=)
{4 (r-p)’ =%/ 7]~ ro+pr)(r-p)2r%/ T+ *(pp)2r?/35)
Pz =No(525/8) il o (=)
{4(p0)[(r-p)’ =26/ 7] = o +pr)(r-p)26/ T+ *(1)26%/35 )
Pas =No(875/8)" 22} js 5(+)"
(4o +pn)[ (r-p)* = r2p?/25 ]| - 4(m)(x-p)4p>/5— *(pp)(r-p)4r*/5)
Pus =No(525/16)' 263 Jy 5[ (r-0) = r6%/5]
[(=)728(irxp) +(+)"2(irxp) ]
P16 = No(175/16) /233 j, 5| (r-9)2 = r26%/5]
[3(=)"2(irxp)— (+)"*(irxp) ]
Qa7 =iNg(735/2)" it} o o(+)"
{“(irrxp)| (r-p)*~r%?/7] = *(iorxp)(x-p)2r%/T)
Pus =iNy(735/2)"*2icg s o(—)

{“(iorxp) [ (r-p) 1/ 7] = *(irrxp)(r-p)26/7)
APPENDIX B: 24 ROWS OF THE H, , MATRIX

H, o, =(x,/6)] —(62/2)@; +(1/2)ps +(3"/2) g5 ]
+(x, /K)[ —(672/3) e, — @7 +(31/%/3) g5 ]
H, 0, =(x,/6)][ —(2%/6)@;5 +(3"/%/2) s +(1/6) 5]

+(x, /)] (272/3)@s +(3/2/3) 7 = (1/3) 5]
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H, ., =(x, /)] —(6'%/2)9,~(2%/6)p, —(1/3)910]
+(x, /%) =5(6"2/9) g5 +(30"/2/9) @1, +(1/3)py;
—(3V%/9) 14 +(272/3) 1, — (6/2/9)p15 ]

H, @y =(x,/k)[ —5(6"//18)gpy — (30//18) g1, —(1/2)915
—(3'2/18) @14 +(22/2)pyr +(6'/2/18) 4 |
+(r, /)] —(6'2/3) @, +(2/%/3) g, +(2/3) gy, |

H, 05 =(x,/6)[(1/2)9,+(3/%/2)9, +(6'/%/2) ey, ]
+(k, /) [ (1/3)95 +(5'2/3)@1, = (6'2/3) 9y
+(2Y2/3) 1 +(3%/3) 91, — (1/3)gss ]

H, o= (x,/6)[(3/%/2) @+ (1/6)9; +(2/*/6)po]

+(x, /x)[ = (372/9)9s — (15'2/9) @y, +(2'/2/3) pys
—(6"%/9)¢1s — (1/3)@17 + (3"//9) 1]
H, ;= (x, /)] =(1/2)9s +(5"%/ D1, = (6"*/6)py
=(22/2) 91— (3/2/6) 91, — (1/2) s
+(k, /)] =91 +(3/2/3) 9, +(6//3)py, ]
H, gy =(x, /)] —(3/2/18)g; +(15'/2/18),, — (2'/2/2) gy,
—(6"2/18)p —(1/2)1; — (3/%/18) ;|
+(x, /6)[(37%/3)9; — (1/3)9, — (2/%/3) gy, |

H, p,=(x, /)] —5(6%/18)p, — (1/2)p, —(31/2/18) g,

Clapp et al.

+ (31/2/6)‘1’15 - 5(3l/2/18)q’19 - (21/2/4)‘1’21 - (61/2/36)‘1322]
+(x, /x)][ —5(6'2/9)¢; + (1/3)ps — (31/2/9) g5 — (3/%/3) s

- 5(31/2/9)‘1’20 + (2”2/6)%3 - (61/2/18)‘1324]
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H, 10=(x, /)] ~(1/3)9; +(6'%/2) g5 +(2'/%/6) 5]
+(x, /)] 2215 = (2'72/3) @15 = (3//3) o + (1/3) 05 )

H, 91=(x,/0)[ (2/%/2)915+(2"%/6)20 ~ (3%/2) 91— (1/6) 914
+ (16, /6)[(2/3)@s +(6"7/3); = (2/%/3) ]

H, 91, =(x,/x)[ —(30"%/18) @, +(5'7/2) @, +(15'2/ 18) s
+(152/10) @5 +(152/90) g, — (10/2/20) ,, — (30'/2/180) s, |
+(k, /)] (30%/9)@; +(5'%/3) s = (15'/2/9) s +(15'%/5) 1
—;(151/2/45)q)20 —(10'2/30) g, +(30"/2/90) @, |

H, 915 =(x, /)] —(1/2)9, ~ (6'*/6)p; — (2/%/2) s
~3(2Y2/8) @15 ~ (272 /4) g1~ (3//6) gy — (1/2) 9]
+(x, /6)[ (1/3)93 = (6//3)ps +(2'/2/3) s = (2/%/ 2) 16
+(212/6) 92— (3V/%/3) s +(1/3)924]

H, 0.4 =(x,/6)] = (3'2/18), = (2/*/2)9, — (6'/%/18)gs
—(6'2/12)g;5 ~ (6"/2/36) @15 = (1/2) 2y — (32/18) 2, ]
+(k, /x)] = (3'/2/9) s +(27%/3) s — (6'/2/9) s +(6'/2/ 6) 16
= (6'72/18) @ +(1/3)¢25 — (3/%/9) P2

H, 15 =(x, /x)[ (3'/2/6)gy +(15'2/10)p1, — 3(2'/%/4) 15
—(612/12)p,, +(10'/2/10) g, |
+(x, /) [ 2210 + (15/2/15)@ys +(35'/%/5) pyg

+ (101/2/10)‘7’29 - (301/2/30)%0]
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H, 16 =(x,/1)[(2'/%/2) @1, — (15'/2/30)z5 +(35"/2/10) s
+3(10'/2/20) @y, +(30V/2/60) gy |
+(x, /)] = (372/3) gy +(1572/5) 1, = (2/%/2) 13
+(6'2/6) 14 +(102/5) gy, |
H, 917=(x,/6)[ (2'/%/2) 05— (3"%/6) @7 — (1/ D)5
~ @19 +(61%/6),, +(2//2) gy, |
+(x, /6)[ (2%/3) @5 +(3'72/3) s — (1/3) s
~(2/3)92 —(6'2/3) g5 +(2/2/3),,]
H, 915 =(x,/x)[(6"*/18)p, —(1/2)¢; — (3"//18) o,
~(32/9) @19 +(2'/%/2) @y +(6'/%/18) g |
+(x, /%) = (6'72/9) 5 ~ (1/3) @5 +(3/%/9) s
+2(3'72/9) @30 +(2%/3) 53 — (6'/2/9) 4]
H, j15=(x,/x)][ =5(3'/%/18) g5 +(15/%/90)p 1, ~ (2// D)@y
= (6"2/36)p14 = @17 = (3//9) @15 — (101%/10) oy
+ (i, /)] = (272/3) 10 — (15'/2/3) s +(35'/%/ 15) g
+(10"/2/10) o — (30/2/30) 3o +2(15"/2/15) s — 2(5Y/%/15) 3, |
H, 0=, /$)[ (2/%/6)p 1, —(15'/2/6)s5 ~ (35"/%/30) g
~3(10"2/20) ¢, — (30/2/60) 3o + (15'/2/5) a3 + (5/2/15) 34 ]
+(x, /)] =5(3'72/9) @y — (15'/%/45) @y, +(2//6) ;5

~(6'2/18) 14 —(2/3)01 +2(31/%/9) 915 +(10/2/5) gy, |
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Hr, p¢21 =

H 5=

Hr,p%s =

Hr,p<p24 =

PrsN+1 ™

(x, /0)] = (2'/2/4)py —(101//20)g,, = (3/%/6) gy

~(1/2)@14 +(6"%/6)p 1, +(2/%/2) g +3(15"/2/10) oy |

+(x, /%) = (3172/3) 10 +(10'2/10) @5 +(210"/2/30)
~(15"2/5)@ag +(5"/%/5) 30 + (10%/5) 3, —(30'/2/15) s, |

(x, /%)] = (6"2/36)9; —(30'/%/180) 91, —(1/2) g5

=(3%/18) @14 +(2/%/2) @1, +(6'2/ 18) 1 +(5'/2/10) gy )

+ (e, /)] (1/3)@10 = (30'72/30) 5 — (70'/2/30) g
+(512/5) @y — (151/2/15) 3o — (30'/2/15) 35 +(10/2/15) s, |
(k, /)] = (3"/%/2) @1 —3(10"/2/20) 5 +(210'/2/20) 3¢

— (15'72/10) 55 — 3(5"/%/ 10) g — (101/2/10) s — (30"/2/ 10) 3, |
+(x, /6)[(2/%/6) 9y = (10'/2/30) 9y, = (3%/3) @13 + (1/3) 14
—~(6"2/3)g17 +(2/%/3)@1s +(157/5) 1]
(k, /)] =(1/6)@y; = (30'72/60) @y +(70'/2/60) oy
~3(5'2/10) @, — (15'/2/30) @30 — (30'/2/10) 3, — (10/2/30) 3, |
+(x, /6)[ = (6"%/18)py +(30'/2/90) @y +(1/3)ey3

- (31/2/9)(1314 + (21/2/3)‘1’17 - (61/2/9)%8 - (51/2/5)%7]
APPENDIX C: GENERALIZED BASIS FUNCTIONS

NN+ 1)2(P)NeMkNjy yr ™oV Py(cos?)

Q)21 + (=) 2(1) ]
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Pion+2=No[ @N+1)/3]"2(PY ikl »
rNoMPy(cos $)[3(+)72(1) = (=) 2(1) ]
Pron+3 =iNo[4/3QN+2) ]2 (P (=) k¥ ey s
[ 2E)r Y Py (cos §) = 4(p)r* 1oV~ 1Py (cost) ]
Pron+a =iNo[4/3N+2) 2PV (+) 66X Yy i
[ *(0)r ™oV Pipi(cos ) = 4@V 1o+ 1Py (cos ) ]
Pion+s =iNo[2/@N+2) ]2 (PY M ey
AL 220 + (=) 200 ] %Py (c0s$)
= [(+)7(0) +(=)"(p) ] r¥* 1o~ Py (cost) }
Pronss = iNo[2/3QN+2) [ H(PY kY i1,
A[3(+)722@) = (=) 2(0) | "0 Pyy. (cos )
—[3(+)72(p)— (=) () | * 1o~ 'Pi(cos$) }
Prowsr=iNo[ 2/ QN+ 1" 2(PT) ik} * Yy na
{[(=)72(p) +(+)"2(p) | "0 P s(co0s$)
—[(=)72@) + (+)" 2@ | ¥~V * Py (cos ) }
Pronss =iNo[2/3@N+2)]"2(PTY ek} * iy
H{I3(=)722(p) — (+)"%(p) ] r 0" P s(c0s$)

— [3(_ )" 28(r)— (+)" Zc(r)]rN—le+1PI/v(cos§)}
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Pron+o =No[B8(2N+3)/3QN+2)(2N+ 4)]1/2(1"7)1\,('*')T

"ZVH N+1.]N+l N+1 ("'XP)" NPN+1(COS§)

Pion+10=No[ 16/ 2N +2)2N +3)2N+4) /2 PTYN (=) k¥ +2c Y
'jN+2,N[ ) r VP p(cos &) — *(rp+pr)r VoV 1Py (cosg)
+*(op)rV* 3" 2P (cos§) |

Pron+ 11 =No[16/2N+2)2N+3) (2N +4) ]2 (PT)Y (=) kNN +2
Jn, n+2] A(op)r Py 5(cos§) — Hp+pr)r¥ N 1P (cosg)
+4(m)r V=2V 2P} (cos¢) |

Prons 12 =No[24/(2N+1)(2N+2)2N+3)(2N+4)(2N+5)]?

(PN (+)7e)*! N+l]1v+1 N+1

{ o +pr)r oM 2N+ 1) Py, 5(cos{) + (2N +5) Py (cos ) ]

—22N+3)[ (m)r¥ TN 4+ 4(pp)r VN By (cos§))
Pion+13 =No[ 42N +3)/ (2N +2)2N+4) /3(PT) NN+ 1k N+

St vt (172X p) +(+)72(irxp) |- rMpVP, ((cos )
Prons+1s =No[42N+3) /32N +2)2N+4)]'2(PT)N+ 1N+

St a1 [3(=)722(irXp) = (+)72(ir X p) |- r¥0M P (c0s8)
Pron+1s =iNo[64/(2N+2)QN+4)(2N+6) 1PN (+)"

42N

‘K, Jn+2, N+I[ (irr X p)r™p"Py , ,(cosg)

—4(iprxp)rN* N =1pp  (cost) ]
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Pi6n+16 ="No[64/(2]\["‘2)(2]\7'"4)(21\""6)]1/2(1)7)1\’(")T
'Kﬁwl";\'”ﬁw 1,N+2[ 4(ipr><p)erNP1(}+2(cos§)

—4(irrxp)rN VP, ((cos{) ]

APPENDIX D: GENERALIZED H, , MATRIX

H, isns1=[@N)/@N+1)]"
X {(, /) 3/9*P16n-12 = (1/8)*D16n—5 = (3/8) P16
+ (6, /) (1/3)*Pron-13+(1/2) 16511 = (1/6)*Pren_10] )
+[@N+2)/@N+1D]"*{(x, /)] = B/9"*p16n43
+(1/8) 0165 +(3/8) *Grgn v
+(x, /)] = (1/3) 2 prgnsa = (1/2) Prons 7+ (1/6)*@rgn s )
H, pions2=[@N)/@N+1)]?
X {6, /[ (1/6)@16x-12 = (3/8) @169 = (1/72) * P16y _s )
+ (6, /)] —(1/3)Pr6n-13 = (1/6)*Pron—11 +(1/18) i1 }
+[@N+2)/@N+D)]{(x, /)] = (1/6) @164
+(3/8) 2 grenes +(1/72)prex 6]
+ (15, /) (1/3)rsnsa +(1/6)*Proar = (1/18) @16y 4]}
H, @1oxes=[@N)/@N+1D ] (x, /) = (25/72)*pr6n—7
~(3/16)pren-3—(1/12)@16n 3]+ (5,/)[ = (1/3) *@1n_o]}
+[@N-1DQN)/@N+1D)2N+3)]"(k, /x)(1/72)@15n_4

+[@N+2)/@N+ 1]k, /)] ~3/D*@16n41 —(1/6)Pron a2 ]
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+[@N+4)/N+3)]"{(x, /)] =(1/12)¢16x410]
+ (16, /)] = (25/18)@1x 0 + (1/12)*Pron 13 = (1/6) Pron16] )
+[(2N+4)2N+5)/QN+1)2N+3)]"(x, /6)(1/18)"*@isx 12
+[@N+2)/@N+3)]"(k, /)] (1/3) 0 16ns17 = (1 /3160416
H, @ion+s=[2N)/QN+D)]2{(k, /6)(1/12)"*1ep_s
+(k, /)] = (25/18)*prgn 7 +(1/12) P prn_3 = (1/6)P1en-2] )
+[@N=1@N)/@N+1)N+3)]"*(k, /x)] —(1/18)"*p 6y _s]
+[@N+2)/@N+1D]"(, /0)] =(1/3)" 91641+ (1/)P16x 2]
+[@N+4)/@N+3)]"{(x, /0] ~(25/72) p1645
~(3/16)*Pigys 13— (1/12) s 1] + (, /6)(1/3) 1611}
+[@N+4HQN+5)/@N+ DN +3)]Y(k, /)| = (1/72) ¢ 16x41)
+[(@N+2)/@N+3)]1"2(x, /)] 3/9"*Prons17+(1/6)Prs 5]
H, pieves=[@N)/@N+1)]*{(x, /)] ~(3/16) ¢y
~(1/8)@ren—3 = (3/8)"*prsn—2 ] + (6, /) = (1/2)*@1en-s] }
+[@N-1)2N)/@N+1D)QN+3)]"(x, /<) —(3/16)*p16n_s]
+[@N+2)/@N+1D]"(k, /) (1/8)*Prons1+(3/8)*Pr6x42]
+[Q@N+4)/2N+3)]"{ (%, /6)9/8)*Pron+10
+(x, /) (1/12) 2 16n 10 = (1/2)*@1p4 15+ (1/6)*Pron14) )
+[@N+4)Q2N+5)/2QN+1D)Q2N+3)]1"(k, /x)(1/12)*@isnr1

+[@N+2)/@N+3)](x, /) (1/2)15x011 = (1/6)*016n 015
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H

r

Prenes=[@N)/ QN+, /0)[ = (1/12) @160
~(3/8)*Prion—s = (1/72) @iy ]+ (5, /6)(1/6) 5y
+[@N=-DCN)/QN+DN+3)]"(k, /6)] = (1/12)@1sn_4]
+[@N+2)/@N+ D], /6)[ (3/8) P Prgnsr +(1/72) " prnss]
+[@N+4)/@N+3)]"{ (6, /6)(1/28) *@1654 10
(6, /)] = (1/ 0P 1n1s +(1/6) pigns 15— (1/18) pin 1))
+[@N+HQN+5)/QN+1DEN+3)](x, /6) = (1/6) 9165+ 12]
+[@N+2)/@N+3)]"(x, /)] = (1/6)prgs1r +(1/18)*prgp s
H, $ioxr=[@N)/@N+1D)]{(k, /)] = (9/8)*@1ns)
+(6, /)] (1/12) @168 = (1/2)pron_3 + (1/6) 1, ] )
+[@N=1)QN)/@N+D@N+3)](k, /k)] — (1/12) ey _,]
+[@N+2)/@N+ D]k, /)] =(1/20r6ms1 +(1/6)*Pry12]
+[@N+4)/@N+3)]"{(k, /6)[ = (3/160)*prgn s
~(1/8)@16w 113 = (3/8) P @rnara] + (5, /6)(1/D) P pronans)
+[@N+)QN+5)/QN+1)2N+3)]"(k, /)(3/16) @14+ 12
+[@N+2)/@N+3)]"(k, /0)] = (1/8)*prgns 17~ (3/8) @162 18)
H, invs=[@N)/@N+1DT"*{(x, /6)] = (1/28) Py ]
+(k, /)~ (1/6) @161 +(1/6) *Gren-3—(1/18) 15, ] )
+[@QN=DEN)/QN+ DN +3)]"(k,/5)(1/6)p1en_4

+[@N+2)/@N+ )]k, /6) [ (1/6)*Pron s — (1/18) ¢ r6n 02 ]
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+[@N+4)/@N+3)]7*{(5, /)] = (1/12)@16x45

~B3/89"*Pions1s = (/7 @1y ra] + (6, /) = (1/6)*prgwani ]}

+[QN+4)QN+5)/CN+1DE2N+3)]"(k, /x)(1/12) Q165412

+[@N+2)/@N+3)](x, /)] = 3/8) 16w err = (1/7D Dr61118]
H, pionvs=[@N)/@N+3)]

x {(k, /6)] = (1/29)" 16w ] + (16, /6)(1/6) P16y -1 }

+[@N+4)/@N+3)]*{(c, /)] = (25/72) *Pign1s

~(3/16)"@1gwa1 = (1/12)Prcx+s]

+(x, /)] = (25/18) @16 a5 +(1/12) @ 1gnss — (1/6)Pron s }

+[@N+6)/2N+3)]"*{(x,/6)(1/24)* Prgrs1s

(i, /6) = (1/6) @16 as6] )

+[@N+2)/@N+3)]"{(x, /)] —(25/72) @ 16n415

~(3/16)Prignen —(1/12DP16v+22)

+(k, /)]~ (25/18) 2 @rn20+ (1/12) Doy azs = (1/6)Pronane] }
H, isws10=[2N)/@N+3)]"(k, /)(1/2)P16n-1

+[@N+4)/@N+3)](x, /)] ~(1/12) @ 1gx03

+(9/8) 2 @ronss +(1/24)* Prgnae]

+[@N+6)/2N+3)]"*(x, /K)Pren+15 + [N +2)/2N+3)]"/

X (Kp/")[ _(1/3)1/2%61\'“9 - (1/2)1/2‘P16N+21 +(1/6)1/2<P16N+22]
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H, ionen=[QN)/QN+3)](k, /k)pisn + [@N+4)/2N+3)]"
X (16, /) (1/3) P @r6naa +(1/D)*Or61r7 = (1/6) 016 0]
+[@N+6)/@N+3)]"(k, /)(1/DPron 116+ [2N+2) /2N +3)]"2
X (k, /K)[(1/12) 16x220 = (O/8)*Prswszs = (1/29) Do 4]
H, @isne12=LQN)2N+5)/QN+1)QN+3)]
{(x, /0)3/8) pro + (x, /6)(3/2) > Prgn-1)
+[@2N+4)(2N+5)/2N+1)(2N+3)]"?
< {(,/6)-[ = (1/72) @160+ (3/16) * @17 +(1/12) P16y s
+ (1, /) (1/18)prgnas +(1/12)*@renrs = (1/6)prgns | )

+[@N+ DN +6)/@N+3)2N+5) 1" {(x,/6)(3/8)*@16x+15

+(x,/K)3/D *Prens16) + [QN+1D(2N+2) /2N +3)2N+5)]'/

X {(6, /) [(1/72)*Prsns1s = (3/16)* Pronans = (1/ 121622
+ (5, /) = (1/18) P @1ema0 = (1/12) 016w + (1/O)Prens24] )
H, @onen=[QN)/QN+3)]"*
X {(k, /)G /DPron + (5, /6)(1 /D P11}
+[@N+4)/@N+3)]"*{(k, /)] = (3/16) " P1gns4
~(1/8)prons7—(3/8) Prenas]
+(x, /) (112 prgp s = (1/2) @r6pas +(1/6) *pigns] )

+[@N+6)/@N+3)]"*{(x, /)] = B/Dprgn15]

+ ("p /")[ - (1/2)‘P16N+16]}
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+[@N+2)/@N+3)]*{(x, /6)] = (3/16)@rens10

~(1/8) pign11 = 3/8) Prenan]

(6, /) (110 prnr0 = (1/2*@rgy2s + (1/6) *Pranaa] |
H, giov1a=[(2N)/(2N+3)]'/?

X {(x, /6)(1/48)" 2 @1gn +(x, /1) = (1/12)" sy 1] }

+[@N+4)/@N+3)]"{(x, /6)] ~(1/12)¢16x.4s

~(3/8)"Prionsr = (1/72)* Prgas]

+ (6, /)] = (1/6) @143+ (1/6) *@1enss = (1/18) @116 )

+[@N+6)/@N+3)]*{(x, /6) ~(1/48) *p16n115]

+(, /k)(1/12) P iy 6} + [ 2N +2)/2N+3)]'/?

x{ (e, /W) ~(1/12)@16n419 = 3/8)*Prons21 = (1/72) *Pigw ]

+(x, /6) = (1/6)Prons20 +(1/6) G112 —(1/18) i 154 ]}
H, @ione1s =[@N+6)/@N+3)]"*{(5,/0)[ (1/29)*¢16n4

—B/DPien+13— (1/48)1/2¢16N+14] +(x, /K)Pren+ 10}

+[@N+1D)QN+6)/@N+3)2N+5)]"X(x, /k)(3/8) P 1sn12
+[@N+2)/@N+5)]"{(x, /6)(1/)P16x 426
+ (Kp /K)[(1/6)1/2(P16N+25 + (1/2)?’161v+29 - (1/12)1/2‘1’161«4-30]}

+[@N+2)QN+T7)/2N+3)2N+5)]1"*(k, /x)(3/2)*Pron+ 28
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H, @ions16=[@N+6)/2N+3)]"*{(x,/6)(1/2)Prex+11
+(6, /)] —(1/6) @160 = (1/DPr6wa 13 +(1/12) P11 10}
+[@N+1DQN+6)/2N+3)2N+5]1"(x, /k)3/2) " *Pren+12
+[@N+2)/@N+5)]"{(x5,/0)] = (1/29) 9161125
+(3/DP1on+20 +(1/48)"*Prgmaao | + (6, /6)Prosn}

+[@N+2)QN+7)/@N+3)2N+5)]"(x, /x)(3/8)"*@ron 420

APPENDIX E: 32 REDUCTION FORMULAS
C=-3"%C,
185 7 31/2VC2
Cro=(1/2)"*[ =3vC, +C,]

Coo=(1/2)/[ ;= 30,

Cp= (1/2)1/2
Cyu= (1/2)

Cou=(1/2)V?[ G —3vG;]

[-
[
Cy =(1/2)"[ =3vCs + G5 ]
[ -3rCs+ G
[ s —3vC, |
[
Cys=—5"%C,
Cpe =5V —1Cyo +(2/15)/2C, ]
Cpy =52 —vCy +(2/15)/7C,, ]
G =(1/21)"/%[30/2(Cyo + Cy) — 15vC12]
C29=—51/2VC13

Go=— 520Cyy
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Gy =(1/2)] = 5¢Cys + Cy]
Cyy =(1/2)[ Cy5 = 5vCy6]
Ciy=(5/4)"(3v* - 1)C,
Cou=(5/9"*3v* ~1)C,
Gy =(3/4)"*[(5v* = 1)C; —20C, |
Cis =3/ —20C, + (50> —~ 1)G, ]
Ciy =(3/4)"*[(5v* 1)~ 20, ]
C3s =(3/49)?[(50> = 1)Cs —20C; |
Cyo=(3/4)"?[ —20C5+ (5 = 1)C, ]
Coo=(3/9"*[ = 20Cs+ (50 = )G
Co =(1/8)’(5p* = 1)C,
Cp = (1/18)7[(5/2)(Tv* =1)Cyo + C;; —5(10/3)/36C,, |
Co =(1/18) 7 C,o +(5/2)(Tr? = 1)C,y = 5(10/3)/*5C,, |
Coa =(1/2)" =(10/3)/*(C1o + 1) +(1/6)(250* = 1)Cy |
Cas =(1/8)"*(59* = 1)Cy
Cis=(1/8)"*(5»2 = 1)Cy,
Co =(5/8)"*[(1v? = 1)Cy5~2vCy]

Ca =(5/8)"*[ = 20Cy5 + (T? = 1)Cy4 ]
APPENDIX F: GENERALIZED REDUCTION FORMULAS

Crenr1=(2N+ 1)1/2 Py(—»)Cy
Cisn+2=(2N+ 1)1/2 Py(—»)C,

Cinsz= [1/(N+ 1)]1/2[ Py —7)Cs +Pz’v(_”)c4]
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Cronsa=[1/(N+D][ B(=9)C; + Pyrii(—¥)C,]
Cignas =[1/(N+D]"2[ P} (=9)Cs + Py(~»)C]
Cines=[1/(N+ D[ P} (=9)Co+ (=) Gy
Cion+7=[1/(N+D]"[ Pi(=9)Cs+ Py r(~9)C,]
Cronrs =[1/(N+D]2[ PL(=)Co+ Py (=) G
Cisnro=[22N+3)/3(N+ D)(N+2)]"2 P}, (-7)G,
Crons10=[2/3(N+ D(N+2)2N+3)]"[ P, o(~7)Cyo
+ P (=2)Cpy +(10/3) Pyf, (= 7)Cys
Cronsen=[2/3(N+1)(N+2)2N+3)]V?[ Py (=»)Cyo
+ P o(—7)Ciy +(10/3) Py (= 2)C, ]
Crons1a=[10/3(N+1)(N+2)QN+1)2N+3)2N+5)]"/?
{2(3/10)2@N+3) Py ((—#)(Cio +Cyy)
+{@N+DPY,(—»)+QN+5)Py(—»)]Cy,}
Crn+1a=[22N+3)/3(N+ 1)(N+2)]* P (—2)Cyy
Cins1a=[2Q@N+3)/3(N+1)(N+2)]"> P}, (—»)Cys
Cionr1s =[2/3(N+1)(N+2)(N+3) ][ Pifs(=)Cis+ Py i(=7)Ci]
Crons16=[2/3(N+D)(N+2)(N+3)]*[ P4 ((=9)Cis + Pipa( = ¥)Cie]
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